Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 450: 139284, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38640543

RESUMO

Polyprenols (PPs) are compounds with excellent biological activities and are applied in food, pharmaceutical, and cosmetic industries. However, its strong non-polar nature makes it difficult to separate with many saturated impurities (such as saturated fatty acids) extracted together. Complexation extraction is an effective method for separating saturated and polyunsaturated compounds. In this study, mesoporous silica MCM-41 was modified by imidazole-based ionic liquids (IL) followed by coating these MCM-41-supported IL compounds with silver salt to construct π-complexing adsorbent (AgBF4/IL•MCM-41) to enrich PPs from Ginkgo biloba leaves (GBL) extract. The mesoporous π-complexing sorbent was characterized by small-angle X-ray scattering (SAXS), FTIR, and nitrogen adsorption-desorption. The effect of the ratio of silver salt to IL•MCM-41 on the adsorption capacity of polyprenols from GBL was compared, and the dosage of AgBF4 was determined to be 1.5 mmol/g IL•MCM-41. Adsorption isotherms and kinetics indicate that the π-complexing adsorbent has excellent PPs adsorption performance (153 mg/g at 30 °C) and a fast adsorption rate (the time to reach adsorption equilibrium is 210 s). The PPs were separated using the fixed bed after treatment for only one cycle with AgBF4/IL•MCM-41, and the content of PPs in the product was increased from 38.54% to 70.2%, with a recovery rate of 86.6%. The π-complexing adsorbent showed excellent reusability for ≥3 adsorption-desorption cycles.

2.
Foods ; 13(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38672921

RESUMO

Ginkgo biloba leaves (GBLs), which comprise many phytoconstituents, also contain a toxic substance named ginkgolic acid (GA). Our previous research showed that heating could decarboxylate and degrade GA into ginkgols with high levels of bioactivity. Several methods are available to measure GA in GBLs, but no analytical method has been developed to measure ginkgols and GA simultaneously. Hence, for the first time, an HPLC-DAD method was established to simultaneously determine GA and ginkgols using acetonitrile (0.01% trifluoroacetic acid, v/v) as mobile phase A and water (0.01% trifluoroacetic acid, v/v) as mobile phase B. The gradient elution conditions were: 0-30 min, 75-90% phase A; 30-35 min, 90-90% phase A; 35-36 min, 90-75% phase A; 36-46 min, 75-75% phase A. The detection wavelength of GA and ginkgol were 210 and 270 nm, respectively. The flow rate and injection volume were 1.0 mL/min and 50 µL, respectively. The linearity was excellent (R2 > 0.999), and the RSD of the precision, stability, and repeatability of the total ginkgols was 0.20%, 2.21%, and 2.45%, respectively, in six parallel determinations. The recoveries for the low, medium, and high groups were 96.58%, 97.67%, and 101.52%, respectively. The limit of detection of ginkgol C13:0, C15:1, and C17:1 was 0.61 ppm, 0.50 ppm, and 0.06 ppm, respectively. The limit of quantification of ginkgol C13:0, C15:1, and C17:1 was 2.01 ppm, 1.65 ppm, and 0.20 ppm, respectively. Finally, this method accurately measured the GA and ginkgol content in ginkgo leaves and ginkgo tea products (ginkgo black tea, ginkgo dark tea, ginkgo white tea, and ginkgo green tea), whereas principal component analysis (PCA) was performed to help visualize the association between GA and ginkgols and five different processing methods for GBLs. Thus, this research provides an efficient and accurate quantitative method for the subsequent detection of GA and ginkgols in ginkgo tea.

3.
Heliyon ; 10(2): e24447, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38293436

RESUMO

Commercial lactic acid bacteria strains and indigenous Chinese acetic acid bacterium were co-cultivated bi- and tri-culturally in Junzao jujube puree for the first time to investigate their effects on physicochemical properties and quality attributes. Lactic-acetic acid bacteria co-fermentation was performed at 37 °C for 48 h during the anaerobic fermentation phase and at 30 °C for 144 h during aerobic fermentation. FTIR results showed that predominant wave numbers at 1716-1724 cm-1 and 2922-3307 cm-1 exhibited discernible alterations in the lactic-acetic acid co-fermented jujube purees compared to the control sample. Pearson correlation analysis showed that the flavonoid and flavonol contents were responsible for the enhanced 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) and 2,2-diphenyl-1-picrylhydrazyl scavenging activities of the fermented jujube purees. Consequently, fermented jujube puree from tricultures of Lactobacillus casei, Lactobacillus plantarum, and Acetobacter pasteurianus gave the best results, with the highest phenolics, flavonoid, and flavonol contents and the most improved antioxidative properties and color. Overall, lactic-acetic acid bacteria co-culture holds significant promise in valorizing Junzao jujube purees for functional ingredient development, paving the way for further research into similar interactions with different food matrices or microbial strains.

4.
Compr Rev Food Sci Food Saf ; 23(1): e13261, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38284575

RESUMO

Proteins are essential to human health with enormous food applications. Despite their advantages, plant and animal proteins often exhibit limited molecular flexibility and poor solubility due to hydrogen bonds, hydrophobic interactions, and ionic interactions within their molecular structures. Thus, there is an urgent need to modify the rigid structure of proteins to enhance their stability and functional properties. Ultrasound-assisted ionic liquid (UA-IL) treatment for developing compound modification and producing proteins with excellent functional properties has received interest. However, no review specifically addresses the interactions between UA-ILs and proteins. Hence, this review focused on recent research advancements concerning the effects and potential reaction mechanisms of UA-ILs on the physicochemical properties (including particle size; primary, secondary, and tertiary structure; and surface morphology) as well as the functionality (such as solubility, emulsifying properties, and foaming ability) of proteins. Moreover, the safety evaluation of modified proteins was also discussed from various perspectives, such as acute and chronic toxicity, genotoxicity, cytotoxicity, and environmental and microbial toxicity. This review demonstrated that UA-IL treatment-induced protein structural changes significantly impact the functional characteristics of proteins. This treatment approach efficiently promotes protein structure stretching and spatial rearrangement through cavitation, thermal effects, and ionic interactions. As a result, the functional properties of modified proteins exhibited an obvious enhancement, thereby bringing more opportunities to utilize modified protein products in the food industry. Potential future directions for protein modification using UA-ILs were also proposed.


Assuntos
Líquidos Iônicos , Animais , Humanos , Líquidos Iônicos/química , Proteínas , Interações Hidrofóbicas e Hidrofílicas , Solubilidade , Tamanho da Partícula
5.
Phytother Res ; 37(8): 3211-3223, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37190926

RESUMO

Ginkgo biloba (GB) has enormous bioactives with anti-bacterial, anti-oxidant, anti-cancer, and immune-stimulating properties, with global sales exceeding $10 billion. The terpene trilactones (ginkgolides A, B, and C) and flavonoids (mostly quercetin, isorhamnetin, and kaempferol) have received the most significant focus in GB research to date, whereas other bioactive compounds such as ginkgols and bilobols with various bioactivities such as anti-viral, anti-oxidant, and anti-tumor actions have received less attention. Therefore, for the first time, this review focused on GB ginkgols, bilobols extraction, and bioactivities. This review showed that petroleum ether and acetone extraction had successfully extracted ginkgols and bilobols. Furthermore, bioactivities such as anti-tumor activity and so on have been demonstrated for ginkgols, and bilobols, providing theoretical justification for ginkgols and bilobol as raw material for nutraceuticals, functional foods, pharmaceuticals, and cosmeceuticals. Future research could look into other biological applications (such as anti-oxidant, antitoxins, anti-radiation, anti-microbial, and antiparasite) and their applications in the pharmaceutical, cosmetic, and nutraceutical industries. Besides, the primary research should be on developing green and effective methods for preparing ginkgols and bilobols and fully utilizing their pharmacological activity. This will also provide a new avenue for efficiently utilizing these bioactive compounds.


Assuntos
Antioxidantes , Ginkgo biloba , Antioxidantes/farmacologia , Folhas de Planta , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Resorcinóis
6.
J Sci Food Agric ; 103(13): 6137-6149, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37097259

RESUMO

Global demand exists for high-quality fresh produce. Nevertheless, the quality of fresh produce is severely impacted by its perishability due to its high moisture content. Therefore, fresh produces are preserved using artificial dryers (hot-air dryers, catalytic infrared dryers, etc.) driven by electricity or natural fuels. Nonetheless, the exorbitant cost of power has heightened the need for sustainable resources, notably solar energy, for drying. Hence, this article is a review of how solar dryers and solar-assisted dryers have affected the drying kinetics and quality of fresh produce in the last 5 years. The review showed that solar drying modeling technology (thin-layer modeling, computational fluid dynamics, adaptive-network-based fuzzy interference system, artificial neural network) helps examine fresh produce drying characteristics using various simulation tools before developing any procedure. Solar-assisted drying shortens drying times and increases drying rates. Besides, the quality of the dried fresh produce (color, aroma, appearance, rehydration, etc.) should always be considered. Hybrid solar drying produces higher drying rates and product quality than other solar dryers. However, energy analysis needs to be done as several studies have recognized energy efficiency and product quality. In addition, fresh produce must be pre-treated before solar drying to maintain the final product quality. Therefore, future studies should focus on creating other pretreatment techniques to produce the needed chemical and physical changes and enhance mass and heat transfer. Finally, the influence of solar drying on the final products' nutrient retention or loss, functionalities, or sensory characteristics needs further investigation and comparison to other non-solar drying technologies. © 2023 Society of Chemical Industry.


Assuntos
Dessecação , Luz Solar , Cinética , Dessecação/métodos , Temperatura Alta , Nutrientes
7.
Ultrason Sonochem ; 95: 106418, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37094478

RESUMO

For the first time, purple corn pericarp (PCP) was converted to polyphenol-rich extract using two-pot ultrasound extraction technique. According to Plackett-Burman design (PBD), the significant extraction factors were ethanol concentration, extraction time, temperature, and ultrasonic amplitude that affected total anthocyanins (TAC), total phenolic content (TPC), and condensed tannins (CT). These parameters were further optimized using the Box-Behnken design (BBD) method for response surface methodology (RSM). The RSM showed a linear curvature for TAC and a quadratic curvature for TPC and CT with a lack of fit > 0.05. Under the optimum conditions (ethanol (50%, v/v), time (21 min), temperature (28 °C), and ultrasonic amplitude (50%)), a maximum TAC, TPC, and CT of 34.99 g cyanidin/kg, 121.26 g GAE/kg, and 260.59 of EE/kg, respectively were obtained with a desirability value 0.952. Comparing UAE to microwave extraction (MAE), it was found that although UAE had a lower extraction yield, TAC, TPC, and CT, the UAE gave a higher individual anthocyanin, flavonoid, phenolic acid profile, and antioxidant activity. The UAE took 21 min, whereas MAE took 30 min for maximum extraction. Regarding product qualities, UAE extract was superior, with a lower total color change (ΔE) and a higher chromaticity. Structural characterization using SEM showed that MAE extract had severe creases and ruptures, whereas UAE extract had less noticeable alterations and was attested by an optical profilometer. This shows that ultrasound, might be used to extract phenolics from PCP as it requires lesser time and improves phenolics, structure, and product qualities.


Assuntos
Antocianinas , Antioxidantes , Antioxidantes/química , Antocianinas/química , Zea mays , Extratos Vegetais/química , Fenóis/química , Etanol/química
8.
Food Chem ; 418: 136006, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36996648

RESUMO

The Ginkgo biloba L. (GB) contains high bioactive compounds. To date, flavonoids and terpene trilactone have received the majority of attention in GB studies, and the GB has been utilized globally in functional food and pharmacological firms, with sales > $10 billion since 2017, while the other active components, for instance, polyprenols (a natural lipid) with various bioactivities have received less attention. Hence, this review focused on polyprenols' chemistry (synthesis of polyprenols and their derivatives) extraction, purification, and bioactivities from GB for the first time. The various extractions and purification methods (nano silica-based adsorbent, bulk ionic liquid membrane, etc.) were delved into, and their advantages and limitations were discussed. Besides, numerous bioactivities of the extracted Ginkgo biloba polyprenols (GBP) were reviewed. The review showed that GB contains some polyprenols in acetic esters' form. Prenylacetic esters are free of adverse effects. Besides, the polyprenols from GB have numerous bioactivities such as anti-bacterial, anti-cancer, anti-viral activity, etc. The application of GBPs in the food, cosmetics, and drugs industries such as micelles, liposomes, and nano-emulsions was delved into. Finally, the toxicity of polyprenol was reviewed, and it was concluded that GBP was not carcinogenic, teratogenic, or mutagenic, giving a theoretical justification for using GBP as a raw material for functional foods. This article will aid researchers to better understand the need to explore GBP usage.


Assuntos
Ginkgo biloba , Poliprenois , Ginkgo biloba/química , Extratos Vegetais/química , Terpenos/química , Flavonoides , Ésteres
9.
Food Funct ; 14(2): 569-601, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36537225

RESUMO

Extraction is regarded as the most crucial stage in analyzing bioactive compounds. Nonetheless, due to the intricacy of the matrix, numerous aspects must be optimized during the extraction of bioactive components. Although one variable at a time (OVAT) is mainly used, this is time-consuming and laborious. As a result, using an experimental design in the optimization process is beneficial with few experiments and low costs. This article critically reviewed two-pot multivariate techniques employed in extracting bioactive compounds in food in the last decade. First, a comparison of the parametric screening methods (factorial design, Taguchi, and Plackett-Burman design) was delved into, and its advantages and limitations in helping to select the critical extraction parameters were discussed. This was followed by a discussion of the response surface methodologies (central composite (CCD), Doehlert (DD), orthogonal array (OAD), mixture, D-optimal, and Box-Behnken designs (BBD), etc.), which are used to optimize the most critical variables in the extraction of bioactive compounds in food, providing a sequential comprehension of the linear and complex interactions and multiple responses and robustness tests. Next, the benefits, drawbacks, and possibilities of various response surface methodologies (RSM) and some of their usages were discussed, with food chemistry, analysis, and processing from the literature. Finally, extraction of food bioactive compounds using RSM was compared to artificial neural network modeling with their drawbacks discussed. We recommended that future experiments could compare these designs (BBD vs. CCD vs. DD, etc.) in the extraction of food-bioactive compounds. Besides, more research should be done comparing response surface methodologies and artificial neural networks regarding their practicality and limitations in extracting food-bioactive compounds.


Assuntos
Fracionamento Químico , Projetos de Pesquisa , Fracionamento Químico/métodos , Análise de Alimentos
10.
Food Chem ; 406: 135079, 2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-36463595

RESUMO

Conventional organic solvents (e.g., methanol, ethanol, ethyl acetate) are widely used for extraction, reaction, and separation of valuable compounds. Although these solvents are effective, they have disadvantages, including flammability, toxicity, and persistence in the environment. Deep eutectic solvents (DESs) are valued for their biodegradability/low impact on the environment, low cost, and ease of manufacture. The objective of this review was to provide an overview of applications of DES in food chemistry, specifically in regard of extraction of polyphenols (e.g., anthocyanin, rutin, kaempferol, quercetin, resveratrol), protein, carbohydrates (e.g., chitin, pectins), lipids and lipid-soluble compounds (e.g., free fatty acids, astaxanthin, ß-carotene, terpenoids), biosensor development, and use in food safety (pyrethroids, Sudan I, bisphenol A, Pb2+, Cd2+, etc.) over the past five years. A comprehensive analysis and discussion of DES types, preparation, structures, and influencing factors is provided. Furthermore, the potential and disadvantages of using DESs to extract biomolecules were assessed. We concluded that DES is a viable alternative for extracting polyphenols, carbohydrates, and lipids as well as use in food safety monitoring and biosensor development. However, more work is needed to address shortcomings, and determine whether using compounds extracted with DES can be consumed safely.


Assuntos
Solventes Eutéticos Profundos , Polifenóis , Solventes/química , Quercetina , Lipídeos
11.
J Food Drug Anal ; 31(4): 552-582, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38526817

RESUMO

Because food byproducts (waste) are rich in phytoconstituents, valorizing them is crucial for global food security. However, conventional extraction (CE), including decoction, maceration, Soxhlet, etc., for agro byproducts' polyphenol extraction are time-consuming and rely significantly on vast volumes of potentially aggressive solvents. Hence, Avantgarde extraction technologies, including non-thermal (high hydrostatic pressure (HHPE), pulsed-electric field (PEF), high voltage electrical discharges (HVED), etc.) and thermal extraction (supercritical fluid (SCF), subcritical water extraction (SWE), microwave-assisted extraction (MAE), etc.), as well as their thermal combinations (SCF-PLE, SCCO2-SWE, SCCO2-MAE, etc.), non-thermal combinations (HHPE + UAE, PEF + UAE, HVED + UAE, etc.) and combined thermalnon-thermal (MAE-UAE, etc.) are increasingly replacing CE. However, a review of combined Avant-garde extraction escalation technologies (non-thermal/thermal extraction matrix) for extracting polyphenols from agro-byproducts is limited. Hence, this manuscript reviewed Avant-garde extraction technologies (non-thermal/thermal extraction matrix) for extracting phenolics from agro-byproducts in the last 5 years. The key factors affecting polyphenols' extraction from the byproduct, the recent applications of Avant-garde technologies, and their principle were reviewed using databases from Web of Science and Lens.org. The results demonstrated that combined Avant-garde extraction escalation technologies increase extractability, resulting in polyphenols with higher extraction rates, fewer contaminants, and preservation of thermosensitive components. Therefore, combined Avant-garde extraction technologies should be explored over the next five years. Implementing an integrated process and the strategic sequencing of diverse Avant-garde extraction technologies are important. Thus, further investigation is required to explore the sequencing process and its potential impact on the extraction of phenolics from agro-byproducts.


Assuntos
Fenóis , Polifenóis , Extratos Vegetais , Solventes , Pressão Hidrostática
12.
Molecules ; 27(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36431878

RESUMO

Ginkgols are active constituents from Ginkgo biloba L. (GB) and have pharmacological activities, such as antibacterial and antioxidant activities. In our previous report, only five ginkgols were separated. However, ginkgol C17:1 had two isomers, for which their separation, identification, and bioactivities have not yet been investigated. Hence, this research reports the successful isolation of six ginkgol homologs with alkyl substituents-C17:1-Δ12, C15:1-Δ8, C13:0, C17:2, C17:1-Δ10, and C15:0-for the first time using HPLC. This was followed by the identification of their chemical structures using Fourier transform infrared (FTIR), ultraviolet (UV), gas chromatography and mass spectrometry (GC-MS), carbon-13 nuclear magnetic resonance (13C-NMR), and proton nuclear magnetic resonance (1H-NMR) analysis. The results showed that two ginkgol isomers, C17:1-Δ12 and C17:1-Δ10, were obtained simultaneously from the ginkgol C17:1 mixture and identified entirely for the first time. That aside, the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay showed that the six ginkgol homologs possessed significant antiproliferation effects against HGC and HepG2 cells. Furthermore, the ginkgols with unsaturated side chains (C17:2, C15:1-Δ8, C17:1-Δ12, and C17:1-Δ10) exhibited more potent inhibitory effects than ginkgols with saturated side chains (C13:0, C15:0). In addition, unsaturated ginkgol C15:1-Δ8 showed the most potent cytotoxicity on HepG2 and HGC cells, of which the half-maximal inhibition concentrations (IC50) were 18.84 ± 2.58 and 13.15 ± 2.91 µM, respectively. The IC50 for HepG2 and HGC cells for the three unsaturated ginkgols (C17:1-Δ10, C17:2 and C17:1-Δ12) were ~59.97, ~60.82, and ~68.97 µM for HepG2 and ~30.97, ~33.81, and ~34.55 µM for HGC cells, respectively. Comparing the ginkgols' structure-activity relations, the findings revealed that the position and number of the double bonds of the ginkgols with 17 side chain carbons in length had no significant difference in anticancer activity.


Assuntos
Ginkgo biloba , Salicilatos , Ginkgo biloba/química , Salicilatos/química , Cromatografia Gasosa-Espectrometria de Massas , Cromatografia Líquida de Alta Pressão , Fenômenos Químicos
13.
Crit Rev Food Sci Nutr ; : 1-35, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36315036

RESUMO

Fruits and vegetables have rich bioactive compounds and antioxidants that are vital for the human body and prevent the cell from disease-causing free radicals. Therefore, there is a growing demand for high-quality fruits and vegetables. Nevertheless, fruits and vegetables deteriorate due to their high moisture content, resulting in a 40-50% loss. Drying is a common food preservation technique in the food industry to increase fruits and vegetables' shelf-life. However, drying causes chemical modifications, changes in microstructure, and bioactives, thus, lowering the final product's quality as a considerable amount of bioactives compounds and antioxidants are lost. Conventional pretreatments such as hot water blanching, and osmotic pretreatment have improved fruit and vegetable drying performance. However, these conventional pretreatments affect fruits' bioactive compounds retention and microstructure. Hence, emerging thermal (infrared blanching, microwave blanching, and high-humidity hot-air impingement blanching) and non-thermal pretreatments (cold plasma, ultrasound, pulsed electric field, and edible films and coatings) have been researched. So the question is; (1) what are the mechanisms behind emerging non-thermal and thermal technologies' ability to improve fruits and vegetables' microstructure, texture, and drying performance? (2) how do emerging thermal and non-thermal technologies affect fruits and vegetables' bioactive compounds and antioxidant activity? and (3) what are preventing the large-scale commercialization of these emerging thermal and non-thermal technologies' for fruits and vegetables, and what are the future recommendations? Hence, this article reviewed emerging thermal blanching and non-thermal pretreatment technologies, emphasizing their efficacy in improving dried fruits and vegetables' bioactive compounds, structural properties, and drying performance. The fundamental mechanisms in emerging thermal and non-thermal blanching pretreatment methods on the fruits and vegetables' microstructure and drying performance were delved in, as well as what are preventing the large-scale commercialization of these emerging thermal and non-thermal blanching for fruits and vegetables, and the future recommendations. Emerging pretreatment approaches not only improve the drying performance but further significantly improve the retention of bioactive compounds and antioxidants and enhance the microstructure of the dried fruits and vegetables.

14.
Food Funct ; 13(18): 9226-9242, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36065842

RESUMO

Ginkgo biloba leaf extract (EGb) is high in bioactive components (over 170), which are used in food additives, medicine, cosmetics, health products, and other sectors. Nonetheless, ginkgolic acids (GAs) in Ginkgo biloba (GB) have been identified as the primary source of EGb's adverse effects such as embryotoxicity, cytotoxicity, neurotoxicity, and inhibition of enzyme systems. As a result, the Chinese, European, and United States pharmacopeias all mandate that the GA concentration in EGb be less than 5 µg g-1. This review looked at the toxicity of ginkgolic acid (from in vitro and in vitro trials) as well as the technologies (such as adsorption/desorption, enzymatic degradation, counter-current chromatography, liquid-liquid microextraction, dual-frequency ultrasonic-solvent extraction, deep eutectic solvent, etc.) used to lower the GA to the desired concentration. These technologies' advantages, disadvantages, viability, and future trends were compared. In addition, several pharmacological significances of GA extraction, such as anti-microbial, anti-inflammatory, anti-tumor, etc., were discussed, as well as future directions.


Assuntos
Solventes Eutéticos Profundos , Ginkgo biloba , Aditivos Alimentares/análise , Ginkgo biloba/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Salicilatos/toxicidade
15.
J Agric Food Chem ; 70(38): 11860-11879, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36099559

RESUMO

Due to their low cost, biodegradability, and ease of preparation, deep eutectic solvents (DESs) are considered promising green alternatives to conventional solvents, as exploiting green solvents has been a research focus for achieving sustainable development goals. Most DESs in published studies are hydrophilic. On the other hand, the DES's hydrophilicity restricts its practical applicability to just polar molecules, which is a vital disadvantage to this extractant. Hydrophobic DES (HDES) has been developed as a new extractant adept at extracting nonpolar inorganic and organic compounds from aqueous systems. Although there has been little research on HDESs (HDES publications account for <10% of DES), specific intriguing applications have been discovered, requiring investigation and comparisons. As a result, this review covers the applications of emerging HDES in detecting pesticide residues, food additives, contaminants in food packaging, heavy metals, separation and extraction processes in food. According to the available literature, HDESs have the potential to overcome the limitations of hydrophilic DESs and be used in a broader range of applications in food with greater efficiency, which has received little attention. HDES is expected to substitute a lot of harmful organic extractants used for analytical reasons (food chemistry) in the future. Besides, the limitations of HDES were reviewed, and future studies were provided. This will serve as a reference for green chemistry advocates and practitioners in food science who want to minimize pollution and improve efficiency and benefit from the further development of HDESs.


Assuntos
Solventes Eutéticos Profundos , Resíduos de Praguicidas , Aditivos Alimentares , Interações Hidrofóbicas e Hidrofílicas , Solventes/química
16.
Food Funct ; 13(15): 7960-7983, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35801619

RESUMO

Exposure to toxins is a severe threat to human health and life in today's developing and industrialized world. Therefore, identifying a protective chemical could be valuable and fascinating in this case. The purpose of this article was to bring together thorough review of studies on Ginkgo biloba to aid in the creation of ways for delivering its phytoconstituents to treat toxicants and radiation. This review gathered and evaluated studies on the defensive impact of Ginkgo biloba extract (GBE) against toxicities caused by toxic chemical agents (such as lead, cadmium, and aluminum), natural toxins (for example, lipopolysaccharide-induced toxicity and damage, gossypol, latadenes, and lotaustralin), and radiation (for example, gamma, ultra-violet, and radio-frequency radiation). According to this review, GBE has a considerable therapeutic effect by influencing specific pathophysiological targets. Furthermore, GBE has antioxidant, anti-inflammatory, anti-apoptotic, and antigenotoxicity properties against various toxicities. These are due to flavone glycosides (primarily isorhamnetin, kaempferol, and quercetin) and terpene trilactones (ginkgolides A, B, C, and bilobalide) that aid GBEs' neutralizing effect against radiation and toxins by acting independently or synergistically. This will serve as a reference for the functional food, cosmetic, and pharmaceutical industries worldwide.


Assuntos
Ginkgo biloba , Extratos Vegetais , Anti-Inflamatórios , Ginkgo biloba/química , Glicosídeos , Humanos , Extratos Vegetais/uso terapêutico , Extratos Vegetais/toxicidade
17.
Food Chem ; 382: 132408, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35176549

RESUMO

The Ginkgo biloba has astonished scholars globally with enormous bioactives, with sales exceeding $10 billion since 2017. The Ginkgo biloba seed (GBS) is an essential part of culinary culture. Nevertheless, toxins in fresh Ginkgo biloba seed (GBS) have limited GBSs' daily consumption. Ginkgotoxin and ginkgotoxin-5-glucoside cause poisoning, tonic-clonic convulsions, and neurotoxic effects. Ginkgolic acid causes cytotoxicity and allergies. Allergic glycoprotein in GBS causes nausea, seizures, dyspnea, mydriasis, vomiting, and bellyache. The amygdalin-derived hydrocyanic acid cause dizziness, vomiting, cramping, and sleeping disorders. Food products are frequently exposed to various processing techniques to increase food safety and functionality. As a result, this review focused on the technologies that have been used to minimize toxins in GBS. In addition, a comparison of these techniques was made based on their benefits, drawbacks, feasibility, pharmacological activities, and future direction or opportunities to improve current ones were provided.


Assuntos
Ginkgo biloba , Hipersensibilidade , Cianetos , Glucosídeos , Glicoproteínas , Humanos , Extratos Vegetais , Piridoxina/análogos & derivados , Salicilatos , Sementes
18.
J Food Sci ; 87(1): 94-111, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34939196

RESUMO

Drying plays a significant role in Ginkgo biloba seed's (GBS) processing, and the previous research showed drying affected the product quality. A combined hurdle drying technology (integrated non-thermal pretreatment and drying) could be applied on GBS to achieve better product quality. Osmotic (OS), osmo-vacuum (OS + V), sonication (US), and osmosonication (OS + US) pretreatment followed by infrared drying was performed on GBS, and the product qualities (texture, color, enzyme inactivation, water activity, and microstructure), physicochemical properties (titrable acidity, reducing sugar, soluble solids, total sugar, free amino acid, and ascorbic acid), and organoleptic qualities were evaluated. Results showed pretreatment had various effects on physicochemical and product quality, and was confirmed by principal component analysis (PCA). The sensory scores, acceptability index combined with Pearson's correlation, and PCA showed that different pretreatments influenced the likeness and acceptability, and color, taste, and odor were the key determinants and strongly associated with the consumers' preferences. The untreated GBS (no pretreatment before drying) had a higher color change and lower enzyme inactivation. Pretreatment increased texture preservation after thermal processing, although it had a negative effect on soluble solids, reducing sugar and total sugar content. While the US improved the texture, it resulted in shrinkage (from the microstructure) and total sugar degradation. Among the various hurdle technologies, osmosonication (OS + US, followed by infrared drying) had the highest sensory attributes, free amino acid, slight structure deformation, and lowest water activity. The present study showed that osmosonication is a promising hurdle technology for GBS because it provides better quality attributes. PRACTICAL APPLICATION: Previous research showed that Ginkgo biloba seed (GBS) drying has an impact on product quality, which will ultimately determine GBS acceptance. This research was set out to envisage and advance current dryer design by merging the sequential operations (integrated non-thermal pretreatment and drying), also known as hurdle drying technology on GBS, to achieve better process efficiency, product quality, and make GBS's drying process more sustainable. The various pretreatments improved ginkgo seed's product qualities compared to the control (no pretreatment prior to drying). Osmosonication is a promising hurdle technology for GBS processing.


Assuntos
Dessecação , Ginkgo biloba , Osmose , Sonicação , Vácuo
19.
J Food Sci ; 86(10): 4577-4593, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34549439

RESUMO

This study evaluated the mass transfer, drying, and rehydration kinetics (drying and rehydration curve, moisture diffusivity [Deff ]), energy consumption (specific energy consumption [SEC], moisture extraction rate (MER), and specific moisture extraction rate [SMER]), and mathematical modeling of infrared dried Ginkgo biloba seed (GBS) using the various nonthermal pretreatments namely: osmotic (OS), osmovacuum (V + OS), ultrasound (US, ginkgo seed immersed in a distilled water with US), and osmosonication (US + OS, ginkgo seeds immersed in an OS solution with US). Results showed that various pretreatments affected mass transfer, drying, and rehydration characteristics, and energy consumption, which was confirmed by principal component analysis. In terms of mass transfer, US pretreatment recorded the highest weight loss while the osmosonication pretreatment registered the highest solid gain. The entire drying process occurred in the falling-rate period. The Deff values were within the normal range of agroproducts (10-11 to 10-8 m2 /s). The modified Page-I and Weibull model best fitted the drying and rehydration kinetics, respectively, with the coefficient of determination (R2 ) > 0.991, root mean square error, residual sum of squares, and reduced chi-square closer to zero, compared with the other models. The untreated GBS (control) had the lowest energy efficiency (lowest SMER and MER) and the highest SEC than the pretreated GBS. Among the various pretreatments, the US pretreatment of GBS was superior, with the highest Deff , MER, SMER, and drying rate, and lowest drying time and SEC. Based on the findings, sequential US pretreatment and infrared drying is a feasible drying technique for GBS that could be used commercially. PRACTICAL APPLICATION: Ginkgo tree cultivation in China has exceeded market needs with 60,000 tons per annum of GBS produced. Hence, there is a compelling need to explore new chances to use GBS availability irrespective of the seasonality and address the problem where GBS utilization is limited to the early phases of home-cooked dishes. Although drying increases the shelf life of ginkgo seeds, there is a higher operation cost. Thus, pretreatment can reduce energy consumption and augment the product quality is ideal. This research reported the impact of nonthermal pretreatments on ginkgo seeds' mass transfer, drying, and rehydration characteristics. The present results will provide a comprehensive understanding of the engineering application of ginkgo seed pretreatment, allowing for the best technique to be selected.


Assuntos
Dessecação , Metabolismo Energético , Ginkgo biloba , Modelos Teóricos , Sementes , Sonicação , Dessecação/métodos , Ginkgo biloba/química , Ginkgo biloba/metabolismo , Raios Infravermelhos , Cinética , Sementes/química , Vácuo
20.
J Sci Food Agric ; 101(8): 3290-3297, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33222187

RESUMO

BACKGROUND: Ginkgo biloba seeds are used as a functional food across Asia. However, the presence of toxic compounds has limited their application. In this study, freeze drying, infrared drying, hot-air drying and pulsed-vacuum drying were used to dry G. biloba seeds. A comprehensive analysis was performed on their product quality, antioxidant activities, bioactive and toxic components. RESULTS: Results showed that the drying methods had a significant influence on product quality with freeze drying being superior due to the minimal microstructural damage, followed by infrared drying and pulsed-vacuum drying. Infrared-dried product possessed the strongest antioxidant activities and higher bioactive compound content than hot-air-dried and pulsed-vacuum-dried product. Toxic compounds in fresh G. biloba seeds (ginkgotoxin, ginkgolic acid and cyanide) were reduced markedly by drying. Ginkgotoxin was reduced fourfold, and the contents of acrylamide, ginkgolic acid and cyanide in dried G. biloba seeds were reduced to the scope of safety. Amongst the four drying methods, infrared drying had the shortest drying time, and its product showed higher quality and bioactive compound content, and stronger antioxidant activities. CONCLUSIONS: These findings will offer salient information for selecting a drying method during the processing of ginkgo seeds. Infrared drying could be considered as a multiple-effect drying method in the processing of ginkgo seeds. © 2020 Society of Chemical Industry.


Assuntos
Antioxidantes/análise , Dessecação/métodos , Manipulação de Alimentos/métodos , Ginkgo biloba/química , Sementes/química , Cianetos/análise , Cianetos/toxicidade , Dessecação/instrumentação , Manipulação de Alimentos/instrumentação , Ginkgo biloba/toxicidade , Piridoxina/análogos & derivados , Piridoxina/análise , Piridoxina/toxicidade , Controle de Qualidade , Salicilatos/análise , Sementes/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA